The researchers conducted two sets of experiments ("Predict the speed-dating outcomes and get up to $6 (takes less than 20 min)" and a similar Prolific experiment) in which participants interacted with the AI system in a task of predicting the outcome of a dating to explore the impact of model explainability and feedback on user trust in AI and prediction accuracy. The results show that although explainability (e.g., global and local interpretation) does not significantly improve trust, feedback can most consistently and significantly improve behavioral trust. However, increased trust does not necessarily lead to the same level of performance gains, i.e., there is a "trust-performance paradox". Exploratory analysis reveals the mechanisms behind this phenomenon.
Xue Zhirong, Designer, Interaction Design, Human-Computer Interaction, Artificial Intelligence, Official Website, Blog, Creator, Author, Engineer, Paper, Product Design, Research, AI, HCI, Design, Learning, Knowledge Base, xuezhirong, UX, Design, Research, AI, HCI, Designer, Engineer, Author, Blog, Papers, Product Design, Study, Learning, User Experience
Xue Zhirong is a designer, engineer, and author of several books; Founder of the Design Open Source Community, Co-founder of MiX Copilot; Committed to making the world a better place with design and technology. This knowledge base will update AI, HCI and other content, including news, papers, presentations, sharing, etc.